
Application of Discrete-Event-System
Theory to Flexible Manufacturing

S.C. Lauzon, A.K.L. Ma, J.K. Mills, and B. Benhabib

he anticipated extensive use of flexible-manufacturing work- T cells in the future has encouraged recent research efforts on
the development of automatic supervisory-control methodolo-
gies. However, despite intensive research on the theoretical
aspects of the control of manufacturing workcells, modeled as
discrete-event systems (DES), a limited amount of research has
been reported on the implementation of DES-based supervisory
controllers. In this article, such a generalized implementation
methodology, that utilizes recent theoretical advances in con-
junction with programmable-logic-controller (PLC) technology,
is presented. The two primary advantages of the proposed meth-
odology are: (i) the utilization of limited-size control strategies
that can be efficiently generated on-line, and which are conflict-
and deadlock-free by construction (via controlled-automata DES
theory); and (ii) the use of PLCs, which are currently the most
suitable and widely employed industrial process-control technol-
ogy.

In our proposed methodology, a host personal computer (PC)
possesses an on-line capability for the automatic generation of
supervisory-control strategies, and their downloading to a PLC
as required. The PLC, in turn, is responsible for monitoring the
workcell, reacting to events and enforcing device behavior based
on the current control strategy residing in its processor. A super-
visory controller developed based on this approach was success-
fully implemented for a manufacturing workcell in our
laboratory.

Introduction

Motivation
A generalized implementation approach to the supervisory

control of flexible-manufacturing workcells is proposed in this
article. The proposed methodology utilizes recent theoretical
advances in control theory, in conjunction with programmable
logic controller (PLC) technology. The flexible workcell consid-
ered has two main characteristics: (i) hardware flexibility-part
transfer is via a robotic manipulator within the workcell; and (ii)
software flexibility-alternate part routes, existing within the
workcell, can be utilized when needed by the workcell controller.

Manufacturing workcells for discrete production usually ex-
hibit the characteristics of a discrete-event system (DES). They

The authors ure with the Computer lntegruted Manufacturing Labo-
ratov, Department of Mechanical Engineering, University of
Toronto, 5 King’s College Road, Toronto, Ontario, Canada, M5S
lA4, email beno@me.utoronto.ca. An earlier version of this article
waspresented at the 1995 IEEE International Conference on Robot-
ics and Automation in Nagoya, Japan.

are event driven, discrete in time and space, usually asynchro-
nous, and typically nondeterministic. In the past, DESs have
usually been sufficiently simple that intuitive or ad-hoc control
solutions have been adequate [11. However, the increasing com-
plexity of these systems has created a need for formal approaches
for their analysis and control. Supervisory controllers for such
systems are required to perform the following three main tasks:
(i) monitoring the workcell behavior, (ii) controlling and evalu-
ating workcell status according to a supervisory-control law, and
(iii) enforcing device behavior. A variety of methodologies have
been proposed to address the control of DESs within a formal
theoretical framework. These methodologies, usually classified
according to their modeling technique, include Petri nets [2,3],
real-time temporal logic [4,5], and controlled-automata [1,6].

Controlled-automata theory provides similar modeling fea-
tures as Petri nets do; however, it differs in that the design of
supervisory controllers is based on logic and formal language
theory. The theory ensures that the plant under supervision will
behave optimally (deadlock-free) and legally (according to given
specifications). The supervisory controller thus obtained is cor-
rect by construction.

Despite intensive research efforts on the theoretical modeling
and development of DES-based supervisory controllers, there
has not been significant research reported on the application of
such controllers. In [7,8,9,10], implementations of DES-based
controllers for manufacturing workcells were presented. In both
[7] and [8], while the employed modeling techniques were
different (Petri-net versus controlled-automata), a computer in
which the supervisory-control strategies resided was directly
wired to the devices to be controlled. In [9,10], however, the
workcell devices were controlled using a PLC. The control
strategy in [9] was developed based on controlled-automata, as
in [6], manually translated into a ladder-logic code, and sub-
sequently programmed manually into the PLC. In another PLC-
based implementation, [lo], a rule-based method is presented to
derive a ladder-logic program from a high-level system model.
The proposed method uses Petri-net modeling as an intermediate
step in moving from a high-level description of a control-strategy
to the Boolean format of the corresponding ladder-logic descrip-
tion.

Our proposed methodology herein is based on combining a
PLC and a PC into an integrated system that can communicate
effectively with local controllers. The integrated controller, thus,
draws on both technologies’ strengths, while offsetting some of
their shortcomings. PLCs are re-programmable controllers with
built-in AID and DIA converters and allow convenient connec-
tion to workcell devices. They are also readily adaptable for the
application of DES-based control strategies. Yet their program-
ming is considered to be time-consuming and error-prone. Con-

February 1996 0272- 1708196/$05.000 1996IEEE 41

PC:

DES-based
Supervisory-

Control-Strategy
Generator

standard state-
transition table

Translator

4 ladder-logic cod

Workcell:
v

Local Controllers

I
Devices

curre,
workc
statu

Fig. 1. Proposed general methodology.

versely, PCs are more readily programmable but are more diffi-
cult to connect to devices for I/O purposes.

Overview of Proposed Methodology
The specific approach for the implementation of a supervi-

sory-control system, proposed in this article, is shown in Fig. 1.
Within the host PC, a DES-based control strategy, in a format
specified by a standard state-transition table, is received by an
automatic ladder-logic translator. It is thereafter translated into
a ladder-logic code and downloaded to a PLC processor that
supervises the manufacturing workcell. This process is imple-
mented as a closed-loop automatic system, where different con-
trol strategies would be downloaded from the PC to the PLC in
an on-line manner, in response to the occurrence of events in the
workcell.

A strategy downloaded to the PLC processor is only a subset
of a comprehensive control strategy. A complete DES control
strategy to describe all possible events in the workcell would be
very large, and as a consequence need too much storage space
on a PLC. Furthermore, it would also be subject to an exponential

explosion of required states, and thus might not be obtainable.
According to our proposed approach, when events in the work-
cell deviate from an initially downloaded nominal strategy, it
would then be possible to re-synthesize and re-download a new
strategy to the PLC.

A key function in our proposed methodology is the ability to
automatically obtain ladder-logic programs. Knowledge-based
generators that take as input a description, in English prose, of
the (continuous) process and create task codes for a PLC have
been reported [11,121. However, in the context of our proposed
methodology, it is not a generator but rather a translator that has
been developed. In this case, the role of the translator is to
facilitate the process of going from a DES strategy to a usable
PLC source code.

In the following sections, DES modeling, based on the work
presented in [1,13], will be reviewed first. The proposed super-
visory-control implementation approach will be detailed there-
after. The experimental work carried out in our laboratory will
conclude this article.

Controlled-Automata
Flexible-manufacturing workcells can be modeled as control-

led-automata, and corresponding supervisory-control strategies
can be developed using the fundamental tools of DES theory
presented in [11. Since automata theory is founded upon formal
language theory, we first define below the modeling issues,
followed by synthesis of control strategies.

Modeling
ADES is typically represented as a set of states that are linked

by transitions. They represent controllable or uncontrollable
events in a manufacturing workcell. The design of a supervisory
controller involves the formulation of the workcell DES models
and their synthesis into a control strategy, where the DES itself
is thus controlled as a generator of a formal language [I].

In automata theory, the set of state transitions, called events,
can be considered as the alphabet of a language, and the sequence
of events as words within the language. An automaton can be
viewed simply as a device that generates a language by the
manipulation of the alphabet according to a specific set of rules.

Proceeding to the description of an automaton, its basic
structure is given by

whereC is a non-empty finite set of distinct symbols that contains
the alphabet. Q is the set of states in the system. The initial state
is given by qo. The transition structure, 6(0, q) is a function 6: Q
x C + Q that maps, one-to-one, the current state and event to the
next state. A transition is the change from one state to another in
response to the occurrence of a physical event. The input to the
function is the current workcell state q and the event, as labeled
by 0, where IS E C. The output of the function is the next workcell
state, due to the occurrence of the event G. Finally, Qm is a set of
marker states. A marker state may be considered as a state that
represents a "completed task". However, there is no implication
that a marker is a terminal state.

The two main advantages of designing supervisory control-
lers based on [I] are as follows: a supervisory-control strategy

42 IEEE Control Systems

developed using the tools within the theory is correct by con-
struction (i.e., the generated language is non-conflicting and
non-blocking), thus guaranteeing that workcell behavior will not
violate manufacturing-process specifications; and the supervi-
sory-control strategy is guaranteed to be the most permissive
(Le., all possible events are allowed) within the given specifica-
tions.

Control Strategy Synthesis
To illustrate the synthesis of control strategies, a controlled-

automata model for a two-machine workcell synthesized from
the languages of two plant models is considered. The basic
controlled-automata plant model is shown in Fig. 2. The events
a (“begin an operation”) and p (“repair the machine”) are
controllable events, while p (“complete an operation”) and h
(“machine breakdown”) are uncontrollable. The nominal (Le.,
preferred) part route in the workcell is to have a part operated on
first by Machine 1, then by Machine 2.

If the model for Machine 1, as in Figure 2, is labeled plant-1,
and the model for Machine 2 is labeled plant-2, the combined
system model is constructed by applying the shufle product’,
thus creating the automaton plant. This operation is represented
by

plant = sync (plant-1, plant-2). (2)

To enforce the desired behavior of the system, that is, to have
a part operated on by Machine 1, then by Machine 2, the
specification that constrains the plant’s behavior must also be
modeled and combined with the aggregate system model plant.
The specification, spec-1, can be modeled as in Fig. 3, which
states that a p-event generated by Machine 1 must occur before
an a-event is generated by Machine 2. Generally, when there are
more than one s ecification, they are combined by the applica-
tion of the meet operation.

The specification spec-1 serves two purposes in this case. The
first purpose is to establish the correct order of operation. This
is accomplished by specifying that only pi and a2 can cause a
change in state, where occurs before a2. The second purpose
is to establish the buffer size between the first and second
machines. The buffer size is limited to one by not including
events a1 and pi in the second self-looping3 event (“b”), as it is
then impossible for another 0.1 event to occur. The first self-loop-
ing event (“a”) simply permits all events to occur, with the
exception of a2.

To synthesize the system model, supervisor, for the supervi-
sory controller, the supcon4 operation is performed on the results
of the shuffle product and meet operations,

B .

‘If the plant models do not share identical events, the shuffle
product is equivalently referred to as the synchronous product
(defined as combined-model = sync (model-1, model-2)) [I].

’The meet operation is simply defined as the intersection of two
languages [I].

’A self-looping event is an event that may occur at a state, but it
does not cause a change to another state.

4The supcon operation determines the supremal-controllable lan-
guage, that is, the legal language for the supervisory control [l].

WORKING

(4
Fig. 2. A basic controlled-automata plant model.

selfloops:
a: { al , h l , p1, p2,h2, p2 }
b: { h l , p1, p2, h2, p2 1

Fig. 3. Specification for the nominal part route.

supervisor = supcon (spec-1, plant). (3)

The state-transition diagram, generated from the supervisor,
for a nominal route of a part in the workcell is shown in Fig. 4.
According to the nominal part route, a part enters the workcell
for operation by Machine 1 (e.g., event ai, from State 0 to State
1). Subsequently, it is expected that the Machine 1 will either
complete its opcration (e.g., evcnt pi, from State 1 to State 2) or
break down (e.g., event hi, from State 1 to State 3). In the former
case, Machine 2 starts its operation (e&, event a2, from State 2
to State 4). As the second machining device starts its operation,
the nominal strategy allows the Machine 1 to begin operating on
a new part (e.g., event a’, from State 4 to State 5). Once the
second machining device has completed its task, it is assumed
that a transport device, unmodeled herein, removes the part from
the workcell.

On-Line Synthesis
Manufacturing workcells have the primary characteristic of

being nondeterministic, where a large number of possible (con-
trollable and uncontrollable) events may occur at a given state.
This characteristic of nondeterminism complicates the imple-
mentation of an effective supervisory controller, since even
moderately complex systems (e.g., four to six machines which

February 1996 43

2 a1

I

I 1

Fig. 4. State-transition diagram of a control strategy for a nominal
part route.

process four to six different parts) may require very large DES
strategies.

The problem of large strategies may be addressed by applying
modular synthesis, aggregation, decentralization, and hierarchi-
cal techniques. However, these techniques have limited use,
since they draw on the special characteristics of the many control
objectives [141. To address this problem, a hybrid supervisor with
an alternate-routing mechanism can be utilized to interact with
thepure DES controller when the system behavior deviates from
nominal specifications.

The Hybrid Supervisory Controller (HSC), proposed in [13],
is such a system. It comprises three main modules (Fig. 5): (i) a
DES Supervisor. (ii) an Alternate-Strategy Driver (ASD), and
(iii) a Diagnostic System. The DES Supervisor is responsible for
nominal part routing. The ASD is a heuristic system that gener-
ates new part routes when an event deviates from the nominal
strategy within the DES controller. The Diagnostic System’s
main task is to interpret sensory feedback from the workcell, and
notify the DES Supervisor and the ASD of its interpretations
~ 5 1 .

Proposed Implementation Methodology
An essential element to the proposed supervisory-controller

implementation methodology, as depicted in Fig. 1, is the ability
to re-synthesize control strategies on-line for limited sub-sets of
events in the manufacturing workcell. At any given time, we
consider only a limited set of possible events for the development
of a control strategy, such that it can be efficiently and automat-
ically generated.

I

Alternate
IDES Supervisor1 a 1 Strategy Driver
I I L

Fig. 5. An overview of the HSC.

44

Methodology
The principal automatic procedure for the proposed approach

comprises: (i) obtaining a control strategy in the form of a
standard state-transition table, (ii) translating the control strat-
egy, via the automatic ladder-logic translator, into a ladder-logic
program, and (iii) downloading the code to the PLC processor.

For the first step, it is assumed that the control strategy
development capability would be residing in a PC. An essential
element is the ability to automatically generate control strategies
in an on-line manner. This objective can be achieved if only
subsets of a comprehensive control strategy are synthesized and
executed one at a time. These limited-size control strategies could
still comprise multiple states and transitions This solution pro-
posal is in contrast to the consideration of the comprehensive
control strategy, which could contain a very large number of
states and events not practically achievable, even if carried out
in a computationally efficient manner.

As limited-size strategies are synthesized, their output are
compiled into standard state-transition tables. The specifications
of the standard state-transition table should be generic, namely,
independent of the DES-modeling technique used to obtain the
control strategy. The proposed format for a standard table entry
is simply (q, o, q’), where q is the exit (current) state, G is the
transition, and q’ is the entrance (next) state. It can be noted that
controlled-automata based techniques would normally output a
control strategy in exactly this format. As briefly described
below, Petri-net modeling techniques could as well output strate-
gies in this format.

In Petri-net theory, both the availability of a machine to
perform a required operation and the availability of parts are
considered for the allowance of transitions between states. How-
ever, the responsibility for verifying the availability of parts can
lie with the local controllers, freeing the supervisory controller
to consider only the availability of machines. In other words,
when the supervisor requests an operation to begin, it would be
the local controller’s responsibility to ensure the availability of
the required resource before the operation can actually begin.
Hence, the states in the standard state-transition table would only
consist of states that deal with machine availability, as is the case
in controlled automata.

The second step of the proposed approach is the input of the
control strategy to a ladder-logic translator. The automatic trans-
lator receives as input the standard state-transition table, and the
list of the PLC’s input/output (UO) reference addresses for each
event type. The output of the translator is a text file containing
the PLC source code.

The state-transition table input file contains the number of
possible events for the control strategy at hand, as well as the
possible events themselves (where each individual event that
may occur in the workcell is labeled by a unique number). Our
translator was designed such that only the VO reference address
files for the events in the state-transition table at hand would need
to be read during the translation. Each possible event has its own
YO reference address file, with the event label incorporated into
the file name (e.g., ref11 for an event labeled as 11). This renders
the translator independent of specified workcell events and PLC
wiring, since the information is not embedded into the hard-code
part of the software.

It should be noted that a translator would have to be hardware
dependent, since currently each PLC manufacturer provides its

IEEE Control Systems

own PLC programming language. However, all PLC program-
ming languages are based on basic ladder logic. Therefore, the
translator described in this article can be adapted to other PLCs
with minimal effort. (An example of the translation operation for
a DES-strategy statement is given in the appendix.)

In regard to PLC-to-PC communications, the primary con-
cern is to monitor the data tables in the PLC processor and to be
able to react to events as required. For example, if a machine
failure sets a certain I/O bit in the PLC’s I/O data table, a
monitoring program residing in the PC can read the value of this
bit (1 or 0) and react to the fault by reporting the fault for the
synthesis and translation of a new control strategy.

WORKING machine-brokedown DOWN

Fig. 6. The extended plant model [8].

Implementation Issues

may generate alternate strategies that consider different sets of

manner. These would be subsequently downloaded to a PLC in
an on-line manner, based on events occurring in the workcell. An

For systems consisting Of Only a few machines, One request will be required in the ladder-logic code. Since, at each
state, there is

possible controllable events.

than one possible transitional event, this
and to ladder-logic programs in an Off-line capability is in essence a mechanism for choosing one ofthe next

-
on-line capability of generating alternate strategies, on the other
hand, requires the use of a real-time controller. The supervisory
controller must have the capability of generating the control
strategies as required, based on feedback information on the
occurrence of events in the workcell. This information would
then be written into a standard state-transition table and sent to
the automatic translator, which would translate all the possible
events into a ladder-logic code, thus closing the loop for the
on-line operation of the controller. Although deadlock or con-
flicts may arise while operating in this mode, the supervisory
controller can successfully resolve such problems by the use of
tools within DES theory (i.e., the application of the supcon
operation), or by a heuristic means [13], as utilized by the
controller in our laboratory. In the latter case, a heuristic algo-
rithm is utilized, which detects potentially deadlocked parts and
then re-routes the parts out of the deadlock.

An important aspect that has to be addressed in the creation
of the automatic ladder-logic translator is to ensure that the
ladder-logic code written for each event type at each workcell
state renders each event type uniquely distinguishable from an
identical event type that may occur at another workcell state. (In
other words, an a-type event that occurs when the workcell is in
state X, and that triggers a certain output reaction in the PLC
program, has to be distinct from the same a-type event that could
occur within the workcell at State Y, and that would trigger a
different output reaction.) To render each possible event unique,
the workcell state has to be included as an input condition in the
ladder-logic code, thus enabling the correct output. This implies
that the PLC keeps track of the workcell states directly, and not
of the machine states.

In the implementation phase, one must also consider that
controllable events do not occur spontaneously, as assumed
previously in [1,6], but rather only as responses to requests sent
by the supervisory controller. To accomplish this, the basic DES
plant model must be modified such that controllable events are
considered to comprise two distinct phases [SI: a request by the
supervisor and the response from the plant, as shown in Fig. 6.
The supervisor considers a change of state only when a response
is received from the plant. Thus, when a translator is developed,
another aspect addressed must be a capability to look ahead to
the next state. This is in order to determine whether an event

Experimental Results
A DES-based supervisory controller for a robotic workcell

was implemented in our laboratory. During the experimental
run-time, different limited-size control strategies were with-
drawn from a database, translated, and downloaded to the PLC
in an on-line manner in response to a machine-failure simulation.
The following is a description of the hardware and the software
utilized, and the test results obtained.

Experimental Set-Up
The experimental hardware consisted of an 80486 host PC,

an Allen-Bradley PLC-Yll Programmable Controller, two ma-
chining devices, an industrial GMF s-100 robot, and a pallet
conveyor, as shown in Fig. 7. One of the machining devices was
an industrial CNC milling machine, while the second one was a
simple switch-box designed and built to emulate the behavior of
a machining device. The CNC milling machine and the robot
were linked to the PLC via a dedicated 80486 PC that acted as
their local controller. The physical communication links were
achieved via Allen-Bradley’s Data Highway Plus (DH+) net-
work, and a 1784-KT card that resided in each of the PCs. The
conveyor and the other machining center were linked directly to
the PLC processor.

The software for PLC-to-PC communications utilized Allen-
Bradley’s C-library function calls, linkable with commercial C
compilers, from their Interchange software. The function calls
allow the user to change processor modes, to download ladder-
logic programs, and to read and write to the VO data tables in the
processor’s memory.

Experimental Procedure
To demonstrate the feasibility of our proposed methodology,

the experimental testbed was considered as a two-machine-
workcell DES model. For simplicity purposes, the robot and the
conveyor were considered as transport devices and they were not
part of the DES model. The nominal state-transition diagram for
a two-machine workcell (developed with the controlled-auto-
mata tools from [l]) is as shown in Fig. 4. The a-type events
represent the start of a job, the P-type events represent the
completion of a job, the h-type events represent the breakdown

February 1996 45

Allen-Bradley
PLC-5/11 w I 1784-KT 1

I 1 1 ABDH+neWork

1784-KT

80486 PC
(local controller)

1 Pallet I 1 Virtual I 1 CNC 1 1 GMF 1
Conveyor Machining Milling 5-100

Device Machine Robot

Fig. 7. Workcell setup.

of a machine, and the p-type events represent the repair of a
machine.

According to the nominal strategy, a part first enters the
workcell via a pallet conveyor. When a limit switch senses that
a pallet has arrived at its expected destination, it notifies the PLC,
which in turn enables the CNC milling machine, via a request
signal, to start its operation. The robot controller intercepts this
request and activates the robot to transfer the part from the
conveyor to the CNC milling machine. Upon the completion of
this operation, the robot’s controller notifies the PLC processor,
which in turn allows the entry of another part into the workcell.
In parallel, the CNC milling machine also notifies the PLC that
it has started its operation. Subsequently, it is expected that the
CNC milling machine will either complete its operation, and
send the appropriate signal to the PLC, or break down, sending
a different signal to the PLC.

In the former case, the PLC enables the second (virtual)
machining device to begin its operation. The robot’s controller
once more intercepts this signal and transfers the part from the
CNC milling machine to the second machining device. As the
second machining device starts its operation, the nominal strat-
egy allows the CNC milling machine to begin operating on anew
part. Once the second machining device has completed its task,
it is assumed that another transport device removes the part from
the workcell.

In the latter case, namely when the CNC milling machine
fails, the workcell is stopped, and an alternate control strategy,
shown in Fig. 8, is downloaded to the PLC from the host PC. The
alternate strategy requires a part to go through two consecutive
operations on the second machining device. The operation that
replaces the operation on the CNC milling machine is denoted
by the subscript “3”. Once the CNC milling machine is repaired,
however, the nominal strategy is re-downloaded to the PLC’s
processor.

The failure of the second machining device, on the other hand,
is considered “fatal” to the operation of the workcell, since it is

P2

Fig. 8. State-transition diagram of a control strategy for an alternate
part route.

assumed that the CNC milling machine is incapable of replacing
it as an alternate device. In this case, the host PC instructs the
PLC to await the repair of the CNC milling machine while
maintaining the cell in a “frozen” status.

The above supervisory-control strategies were vigorously
tested. The experiments successfully verified the validity of our
proposed methodology.

Conclusion
In this article, we have developed a generalized methodology

for the implementation of a supervisory-control system that has
the capability to generate control strategies in an on-line and
automatic manner. The strategies are sub-sets of a comprehen-
sive DES strategy and they are downloaded to the PLC according
to events occurring in the workcell. The experimental results for
a two-machine workcell has demonstrated that the proposed
general methodology using PLC technology is a realistic and
practical means for implementing DES supervisory-control
strategies.

For the on-line generation of control strategies in real-time, a
hybrid controller such as the one presented in [13] should be
considered. This specific controller has the capability to generate
limited-size control strategies in a step-by-step manner in re-
sponse to the occurrence of each event in the workcell. Operating
in this mode, the possibility of deadlock arises, but the controller
has the capability of dealing with direct deadlocks.

Acknowledgments
We gratefully acknowledge the support of the Natural Sci-

ences and Engineering Research Council of Canada, the Allen-
Bradley Canada Company, and the Rockwell International
Canadian Trust.

Appendix: Automatic Translator Example
The automatic ladder-logic translator developed herein re-

ceives a control-strategy statement in the form of a triplet (exit
state, transition event, entrance state), and translates it to a
ladder-logic source code. The inputs to the translator are (i) a file
that contains the DES strategy triplets and (ii) a file which

46 IEEE Control Systems

contains a priori known UO reference addresses for each event.
The output is the ladder-logic code for an Allen-Bradley PLC-
5/11 Programmable Controller.

As an example, the translation of the first two events in the
state-transition table of the alternate control strategy, as shown
in Fig. 8, is presented.

Table 1 is the complete state-transition table for the alternate
route. It has eight possible states as indicated by the first line in
the table. The events are numbered 31,30,32,33,21,20,22,23
and correspond to the events a3, p3, h3, p3, a2, p2, h2, and p2. As
previously mentioned, the a and p events are controllable, while
the events p and h are uncontrollable.

second rung resets the event-request bit at (0:001/03) using the
OTU (“unlatch output”) instruction, once a response has been
received from the machine for the event-confirmation input bit
(I:OOl/OO). The third rung sets the bit at (0:003/10) to register
the occurrence of the event. The fourth rung sets the next work-
cell state bit (0:002/01) “on,” and the fifth rung resets the current
workcell state (0:002/00) “off.” The rungs dealing with p3 event
are similar to those for the a3 event, except that no rung for an
event-request is necessary since p3 is an uncontrollable event.
The ladder-logic code for the other events are also similar to a 3
and p3, depending whether they are controllable or uncon-
trollable events.

Table 1. State-Transition Table of the
Alternate Control Strategy

I

Using Table 1 and the I/O reference-addresses files, the
following translated ladder-logic code is obtained, via automatic
translation, for the first two events a3 and p3:

SOR XIC 0:002/00 XI0 0:002/06 OTL 0:001/03 EOR
SOR XIC 0:002/00 XIC I:OO1/00 XI0 0:002/06 OTU 0:001/03 EOR
SOR XIC 0:002/00 XIC I:OO1/00 X I 0 0:002/06 OTL 0:003/10 EOR
SOR XIC 0:002/00 XIC I:OO1/OO XI0 0:002/06 OTL 0:002/01 EOR
SOR XIC 0:002/00 XIC I:OO1/00 XI0 0:002/06 OTU 0:002/00 EOR
SOR XIC 0:002/01 XIC I:001/01 XI0 0:002/06 OTL 0:003/11 EOR
SOR XIC 0:002/01 XIC I:001/01 XI0 0:002/06 OTL 0:002/02 EOR
SOR XIC 0:002/01 XIC 1:001/01 XI0 0:002/06 OTU 0:002/01 EOR

In the first rung, SOR is the “start of rung” instruction, XIC
is the “examine bit on” instruction, XI0 is the “examine bit off’
instruction, OTL is the “latch output,” and EOR is the “end of
rung” of rung instruction. The I/O reference addresses are repre-
sented by the alpha-numeric sequences beginning with “0 ’ for
an output and “I” for an input. The first set of three digits before
the slash indicate the data address at the word level, while the
last two digits after the slash indicate the data address at the bit
level. The first five rungs deal with the first possible event a3 (a

References
[I] P. Ramadge and W.M. Wonham, “The Control of Discrete Event Sys-
tems,” Proceedings ofthe IEEE, 1989, vol. 77, no. 1, pp. 81-98.

[2] F. DiCesare, G. Harhalakis, J.M. Proth, M. Silva, and F.B. Vemadat,
Practice of Petri Nets in Manufacturing, Chapman &Hall, New York, 1993.

[3] H. Van Brussel, Y. Peng, and P. Valckenaers, “Modeling Flexible Manu-
facturing Systems Based on Petri Nets,” CIRP Annals on Manufacturing
Technology, 1993, vol. 42, no. 1, pp. 479-484.

[4] F. Lin, “Analysis and Synthesis of Discrete Event Systems Using Tem-
poral Logic,” Joumal of Control-Theory and Advanced Technology, 1993,
vol. 9, no. 1, pp. 341-350.

[5] J.S. Ostroff and W.M. Wonham, “A Framework for Real-Time Discrete-
Event Control,” IEEE, Transactions on Automatic Contml, 1990, vol. 35, no.
4, pp. 386-397.

[6] B.A. Brandin, W.M. Wonham, and B. Benhabib, “Discrete Event System
Supervisory Control Applied to the Management of Manufacturing Work-
cells,” Computer-Aided Production Engineering, V.C. Venkatesh and J.A.
McGeough, eds., Elsevier, 1991, pp. 527-536.

[7] M. Zhou and E DiCesare, Petri Net Synthesis for Discrete Event Control
of Manufacturing Systems, Kluwer Academic Publishers, Boston, 1993.

[8] S. Balemi, “Discrete Event Systems Control of a Rapid Multiprocessor,”
7th IFAC Symposium on Information Control Problems in Manufacturing
Technology, Toronto, Canada, 1992, pp. 53-58.

[9] J.F. Arinez, B. Benhabib, K.C. Smith, and B.A. Brandin, “Design of a
PLC-Based Supervisory-Control System for a Manufacturing Workcell,”
The Canadian High Technology Show and Conference, Toronto, 1993.

[101 M.A. Jafari and T.O. Boucher, “ A Rule-Based System for Generating a
Ladder Logic Control Program from a High-Level Systems Model,” Journal
of Intelligent Manufacturing, 1994, vol. 5, pp. 103-120.

[1 I] S. Bhatnagar andR.J. Linn, “Automatic Programmable Logic Controller
Program Generator with Standard Interface,” ASME Manufacturing Review,
1990, vol. 3, no. 2, pp. 98-105.

[121 R. Devanathan, “Computer Aided Design of Relay Ladder Logic via
State Transition Diagram,” 16th Annual Conference of the IEEE Industrial
Electronics Society, 1990, pp. 521-532.

controllable event) and the last three rungs deal with the p3 event.
The first rung requests for an operation to begin, where the

event-request bit at address 0:001/03 is enabled. The input

[I31 R.A. Williams, B. Benhabib, and K.C. Smith, “A Hybrid Supervisory
Control System for Flexible Manufacturing Workcells,” IEEE, International
Conference on Robotics and Automation, San Diego, 1994, pp. 2551-2556.

conditions of the rung are given by the workcell state (0:002/00)
and a general event-request-disabling bit (0:002/06). (This latter
input condition is included to ensure that the workcell status does
not change while the next set of possible events is being proc-
essed. It is a precautionary measure to avoid injury to persons Or
damage to equipment when a machine failure occurs.) The

[14] B.A. Brandin, W.M. Wonham and B. Benhabib, “Manufacturing Cell
Supervisory Control: A Modular Timed Discrete-Event System Approach,”
IEEE International Conference on Robotics and Automation, Atlanta, 1993,
pp. 846-851.

[15] R.A. Williams, B. Benhabib, and K.C. Smith, “Model-Based Diagnos-
tics for the Supervisory Control of Manufacturing Systems,” AAAI Sympo-

Februa y 1996 47

sium on Detecting andResolving Errors inkfanufactwing Systems, Stanford,
1994, pp. 134-139.

Society for Mechanical Engineenng I.W. Smith Award for Creative Engi-
neering. Mills is a Member of IEEE and the Professional Engineers of

manufacturing proc

Stephane C. Lauzon obtainedhisB.A.Sc.inmechanical
engineering in 1993 from the University of Ottawa and
his M.A. Sc., also in mechanical engineering, in 1995
from the University of Toronto. His contributions to this
article originated from his M.A. Sc. thesis in the area of
DES-Theory-based supervisory control of manufacturing
systems. He is currently a systems engineer with Honey-
well’s Industrial Automation and Control Group. huzon
is a member of the ASME and the IEFE.

James K. Mills is currently associate professor of me-
chanical engineering at the University of Toronto. From
1988-1993, he was assistant professor in the same de-
partment. Mills has authored or co-authored a number
of research papers on various aspects ofrobot dynamics,
stability, and control. His current research interests in-
clude the development of multi-robot assembly systems
for use in automotive assembly plants, as well as a
various applications of control theory to robots and

esses. He was the recipient in 1990 of the Canadian

Ontario.

Anthony K.L. Ma obtained his B.A. Sc. and M.Eng. in mechanical engi-
neering in 1991 and 1995, respectively, from the University of Toronto. His
contributions to this article originated from his M.Eng. project in the area of
automatic supervisory control of manufacturing systems.

Beno Benhabib obtained his Ph.D. in mechamcal en-
gineenngin 1985 from the Universlty ofToronto, where
he IS currently an associate professor in the Department
of Mechamcd Engineering His research interests are
in the general area of computer-integrated inanufactur-
ing. His work has been published widely on various
aspects of robot-motion planning, machine vision,
robotic sensors, and supervisor-control of manufactur-
ing systems. He has consulted to var~ous Ontario manu-

facturers in the areas of CADICAM, robotics, and automated quality control
He is a seruor member of the SME as well as a member of ASME, IEEE, and
AAAI He is a registered Professional Engineer

a
Computer Users’ Ode to Dr. Seuss

Here’s an easy game to play.
Here’s an easy thing to say.

If a packet hits a pocket on a socket on a port,
And the bus is interrupted as a very last resort,
And the address of the memory makes your floppy disk abort,
Then the socket packet pocket has an error to report!

If your cursor finds a menu item followed by a dash,
And the double-clicking icon puts your window in the trash,
And your data is corrupted cause the index doesn’t hash,
Then your situation’s hopeless, and your system’s gonna crash.

You can’t say this? What a shame, sir!
We’ll find you another game, sir.

If the label on the cable on the table at your house,
Says the network is connected to the button on your mouse,
But your packets want to tunnel on another protocol,
That’s repeatedly rejected by the printer down the hall,
And your screen is all distorted by the side effects of gauss,
So you icons in the window are as wavy as a souse,
Then you may as well reboot and go out with a bang,
‘Cause as sure as I’m a poet, the sucker’s gonna hang!

When the copy of your floppy’s getting sloppy on the disk,
And the microcode instructions cause unnecessary risc,
Then you have to flash your memory and you’ll want to RAM your ROM
Quickly turn off your computer and be sure to tell your mom!

-Anonymous, from the Editor S email

48 IEEE Control Systems

