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he anticipated extensive use of flexible-manufacturing work- T cells in the future has encouraged recent research efforts on 
the development of automatic supervisory-control methodolo- 
gies. However, despite intensive research on the theoretical 
aspects of the control of manufacturing workcells, modeled as 
discrete-event systems (DES), a limited amount of research has 
been reported on the implementation of DES-based supervisory 
controllers. In this article, such a generalized implementation 
methodology, that utilizes recent theoretical advances in con- 
junction with programmable-logic-controller (PLC) technology, 
is presented. The two primary advantages of the proposed meth- 
odology are: (i) the utilization of limited-size control strategies 
that can be efficiently generated on-line, and which are conflict- 
and deadlock-free by construction (via controlled-automata DES 
theory); and (ii) the use of PLCs, which are currently the most 
suitable and widely employed industrial process-control technol- 
ogy. 

In our proposed methodology, a host personal computer (PC) 
possesses an on-line capability for the automatic generation of 
supervisory-control strategies, and their downloading to a PLC 
as required. The PLC, in turn, is responsible for monitoring the 
workcell, reacting to events and enforcing device behavior based 
on the current control strategy residing in its processor. A super- 
visory controller developed based on this approach was success- 
fully implemented for a manufacturing workcell in our 
laboratory. 

Introduction 

Motivation 
A generalized implementation approach to the supervisory 

control of flexible-manufacturing workcells is proposed in this 
article. The proposed methodology utilizes recent theoretical 
advances in control theory, in conjunction with programmable 
logic controller (PLC) technology. The flexible workcell consid- 
ered has two main characteristics: (i) hardware flexibility-part 
transfer is via a robotic manipulator within the workcell; and (ii) 
software flexibility-alternate part routes, existing within the 
workcell, can be utilized when needed by the workcell controller. 

Manufacturing workcells for discrete production usually ex- 
hibit the characteristics of a discrete-event system (DES). They 
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are event driven, discrete in time and space, usually asynchro- 
nous, and typically nondeterministic. In the past, DESs have 
usually been sufficiently simple that intuitive or ad-hoc control 
solutions have been adequate [ 11. However, the increasing com- 
plexity of these systems has created a need for formal approaches 
for their analysis and control. Supervisory controllers for such 
systems are required to perform the following three main tasks: 
(i) monitoring the workcell behavior, (ii) controlling and evalu- 
ating workcell status according to a supervisory-control law, and 
(iii) enforcing device behavior. A variety of methodologies have 
been proposed to address the control of DESs within a formal 
theoretical framework. These methodologies, usually classified 
according to their modeling technique, include Petri nets [2,3], 
real-time temporal logic [4,5], and controlled-automata [ 1,6]. 

Controlled-automata theory provides similar modeling fea- 
tures as Petri nets do; however, it differs in that the design of 
supervisory controllers is based on logic and formal language 
theory. The theory ensures that the plant under supervision will 
behave optimally (deadlock-free) and legally (according to given 
specifications). The supervisory controller thus obtained is cor- 
rect by construction. 

Despite intensive research efforts on the theoretical modeling 
and development of DES-based supervisory controllers, there 
has not been significant research reported on the application of 
such controllers. In [7,8,9,10], implementations of DES-based 
controllers for manufacturing workcells were presented. In both 
[7] and [8], while the employed modeling techniques were 
different (Petri-net versus controlled-automata), a computer in 
which the supervisory-control strategies resided was directly 
wired to the devices to be controlled. In [9,10], however, the 
workcell devices were controlled using a PLC. The control 
strategy in [9] was developed based on controlled-automata, as 
in [6], manually translated into a ladder-logic code, and sub- 
sequently programmed manually into the PLC. In another PLC- 
based implementation, [lo], a rule-based method is presented to 
derive a ladder-logic program from a high-level system model. 
The proposed method uses Petri-net modeling as an intermediate 
step in moving from a high-level description of a control-strategy 
to the Boolean format of the corresponding ladder-logic descrip- 
tion. 

Our proposed methodology herein is based on combining a 
PLC and a PC into an integrated system that can communicate 
effectively with local controllers. The integrated controller, thus, 
draws on both technologies’ strengths, while offsetting some of 
their shortcomings. PLCs are re-programmable controllers with 
built-in AID and DIA converters and allow convenient connec- 
tion to workcell devices. They are also readily adaptable for the 
application of DES-based control strategies. Yet their program- 
ming is considered to be time-consuming and error-prone. Con- 
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Fig. 1. Proposed general methodology. 

versely, PCs are more readily programmable but are more diffi- 
cult to connect to devices for I/O purposes. 

Overview of Proposed Methodology 
The specific approach for the implementation of a supervi- 

sory-control system, proposed in this article, is shown in Fig. 1. 
Within the host PC, a DES-based control strategy, in a format 
specified by a standard state-transition table, is received by an 
automatic ladder-logic translator. It is thereafter translated into 
a ladder-logic code and downloaded to a PLC processor that 
supervises the manufacturing workcell. This process is imple- 
mented as a closed-loop automatic system, where different con- 
trol strategies would be downloaded from the PC to the PLC in 
an on-line manner, in response to the occurrence of events in the 
workcell. 

A strategy downloaded to the PLC processor is only a subset 
of a comprehensive control strategy. A complete DES control 
strategy to describe all possible events in the workcell would be 
very large, and as a consequence need too much storage space 
on a PLC. Furthermore, it would also be subject to an exponential 

explosion of required states, and thus might not be obtainable. 
According to our proposed approach, when events in the work- 
cell deviate from an initially downloaded nominal strategy, it 
would then be possible to re-synthesize and re-download a new 
strategy to the PLC. 

A key function in our proposed methodology is the ability to 
automatically obtain ladder-logic programs. Knowledge-based 
generators that take as input a description, in English prose, of 
the (continuous) process and create task codes for a PLC have 
been reported [ 11,121. However, in the context of our proposed 
methodology, it is not a generator but rather a translator that has 
been developed. In this case, the role of the translator is to 
facilitate the process of going from a DES strategy to a usable 
PLC source code. 

In the following sections, DES modeling, based on the work 
presented in [1,13], will be reviewed first. The proposed super- 
visory-control implementation approach will be detailed there- 
after. The experimental work carried out in our laboratory will 
conclude this article. 

Controlled-Automata 
Flexible-manufacturing workcells can be modeled as control- 

led-automata, and corresponding supervisory-control strategies 
can be developed using the fundamental tools of DES theory 
presented in [ 11. Since automata theory is founded upon formal 
language theory, we first define below the modeling issues, 
followed by synthesis of control strategies. 

Modeling 
ADES is typically represented as a set of states that are linked 

by transitions. They represent controllable or uncontrollable 
events in a manufacturing workcell. The design of a supervisory 
controller involves the formulation of the workcell DES models 
and their synthesis into a control strategy, where the DES itself 
is thus controlled as a generator of a formal language [I]. 

In automata theory, the set of state transitions, called events, 
can be considered as the alphabet of a language, and the sequence 
of events as words within the language. An automaton can be 
viewed simply as a device that generates a language by the 
manipulation of the alphabet according to a specific set of rules. 

Proceeding to the description of an automaton, its basic 
structure is given by 

whereC is a non-empty finite set of distinct symbols that contains 
the alphabet. Q is the set of states in the system. The initial state 
is given by qo. The transition structure, 6(0, q) is a function 6: Q 
x C + Q that maps, one-to-one, the current state and event to the 
next state. A transition is the change from one state to another in 
response to the occurrence of a physical event. The input to the 
function is the current workcell state q and the event, as labeled 
by 0, where IS E C. The output of the function is the next workcell 
state, due to the occurrence of the event G. Finally, Qm is a set of 
marker states. A marker state may be considered as a state that 
represents a "completed task". However, there is no implication 
that a marker is a terminal state. 

The two main advantages of designing supervisory control- 
lers based on [ I] are as follows: a supervisory-control strategy 
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developed using the tools within the theory is correct by con- 
struction (i.e., the generated language is non-conflicting and 
non-blocking), thus guaranteeing that workcell behavior will not 
violate manufacturing-process specifications; and the supervi- 
sory-control strategy is guaranteed to be the most permissive 
(Le., all possible events are allowed) within the given specifica- 
tions. 

Control Strategy Synthesis 
To illustrate the synthesis of control strategies, a controlled- 

automata model for a two-machine workcell synthesized from 
the languages of two plant models is considered. The basic 
controlled-automata plant model is shown in Fig. 2.  The events 
a (“begin an operation”) and p (“repair the machine”) are 
controllable events, while p (“complete an operation”) and h 
(“machine breakdown”) are uncontrollable. The nominal (Le., 
preferred) part route in the workcell is to have a part operated on 
first by Machine 1, then by Machine 2. 

If the model for Machine 1, as in Figure 2, is labeled plant-1, 
and the model for Machine 2 is labeled plant-2, the combined 
system model is constructed by applying the shufle product’, 
thus creating the automaton plant. This operation is represented 
by 

plant = sync (plant-1, plant-2). (2) 

To enforce the desired behavior of the system, that is, to have 
a part operated on by Machine 1, then by Machine 2,  the 
specification that constrains the plant’s behavior must also be 
modeled and combined with the aggregate system model plant. 
The specification, spec-1, can be modeled as in Fig. 3, which 
states that a p-event generated by Machine 1 must occur before 
an a-event is generated by Machine 2. Generally, when there are 
more than one s ecification, they are combined by the applica- 
tion of the meet operation. 

The specification spec-1 serves two purposes in this case. The 
first purpose is to establish the correct order of operation. This 
is accomplished by specifying that only pi and a2 can cause a 
change in state, where occurs before a2. The second purpose 
is to establish the buffer size between the first and second 
machines. The buffer size is limited to one by not including 
events a1 and pi in the second self-looping3 event (“b”), as it is 
then impossible for another 0.1 event to occur. The first self-loop- 
ing event (“a”) simply permits all events to occur, with the 
exception of a2. 

To synthesize the system model, supervisor, for the supervi- 
sory controller, the supcon4 operation is performed on the results 
of the shuffle product and meet operations, 

B .  

‘If the plant models do not share identical events, the shuffle 
product is equivalently referred to as the synchronous product 
(defined as combined-model = sync (model-1, model-2)) [I]. 

’The meet operation is simply defined as the intersection of two 
languages [ I]. 

’A self-looping event is an event that may occur at a state, but it 
does not cause a change to another state. 

4The supcon operation determines the supremal-controllable lan- 
guage, that is, the legal language for the supervisory control [l]. 

WORKING 

(4 
Fig. 2. A basic controlled-automata plant model. 
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b: { h l ,  p1, p2, h2, p2 1 

Fig. 3. Specification for the nominal part route. 

supervisor = supcon ( spec-1, plant). (3)  

The state-transition diagram, generated from the supervisor, 
for a nominal route of a part in the workcell is shown in Fig. 4. 
According to the nominal part route, a part enters the workcell 
for operation by Machine 1 (e.g., event ai, from State 0 to State 
1). Subsequently, it is expected that the Machine 1 will either 
complete its opcration (e.g., evcnt pi, from State 1 to State 2) or 
break down (e.g., event hi, from State 1 to State 3). In the former 
case, Machine 2 starts its operation (e&, event a2, from State 2 
to State 4). As the second machining device starts its operation, 
the nominal strategy allows the Machine 1 to begin operating on 
a new part (e.g., event a’, from State 4 to State 5). Once the 
second machining device has completed its task, it is assumed 
that a transport device, unmodeled herein, removes the part from 
the workcell. 

On-Line Synthesis 
Manufacturing workcells have the primary characteristic of 

being nondeterministic, where a large number of possible (con- 
trollable and uncontrollable) events may occur at a given state. 
This characteristic of nondeterminism complicates the imple- 
mentation of an effective supervisory controller, since even 
moderately complex systems (e.g., four to six machines which 
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Fig. 4. State-transition diagram of a control strategy for a nominal 
part route. 

process four to six different parts) may require very large DES 
strategies. 

The problem of large strategies may be addressed by applying 
modular synthesis, aggregation, decentralization, and hierarchi- 
cal techniques. However, these techniques have limited use, 
since they draw on the special characteristics of the many control 
objectives [ 141. To address this problem, a hybrid supervisor with 
an alternate-routing mechanism can be utilized to interact with 
thepure DES controller when the system behavior deviates from 
nominal specifications. 

The Hybrid Supervisory Controller (HSC), proposed in [13], 
is such a system. It comprises three main modules (Fig. 5): (i) a 
DES Supervisor. (ii) an Alternate-Strategy Driver (ASD), and 
(iii) a Diagnostic System. The DES Supervisor is responsible for 
nominal part routing. The ASD is a heuristic system that gener- 
ates new part routes when an event deviates from the nominal 
strategy within the DES controller. The Diagnostic System’s 
main task is to interpret sensory feedback from the workcell, and 
notify the DES Supervisor and the ASD of its interpretations 
~ 5 1 .  

Proposed Implementation Methodology 
An essential element to the proposed supervisory-controller 

implementation methodology, as depicted in Fig. 1, is the ability 
to re-synthesize control strategies on-line for limited sub-sets of 
events in the manufacturing workcell. At any given time, we 
consider only a limited set of possible events for the development 
of a control strategy, such that it can be efficiently and automat- 
ically generated. 

I 

Alternate 
IDES Supervisor1 a 1 Strategy Driver 
I I L 

Fig. 5. An overview of the HSC. 
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Methodology 
The principal automatic procedure for the proposed approach 

comprises: (i) obtaining a control strategy in the form of a 
standard state-transition table, (ii) translating the control strat- 
egy, via the automatic ladder-logic translator, into a ladder-logic 
program, and (iii) downloading the code to the PLC processor. 

For the first step, it is assumed that the control strategy 
development capability would be residing in a PC. An essential 
element is the ability to automatically generate control strategies 
in an on-line manner. This objective can be achieved if only 
subsets of a comprehensive control strategy are synthesized and 
executed one at a time. These limited-size control strategies could 
still comprise multiple states and transitions This solution pro- 
posal is in contrast to the consideration of the comprehensive 
control strategy, which could contain a very large number of 
states and events not practically achievable, even if carried out 
in a computationally efficient manner. 

As limited-size strategies are synthesized, their output are 
compiled into standard state-transition tables. The specifications 
of the standard state-transition table should be generic, namely, 
independent of the DES-modeling technique used to obtain the 
control strategy. The proposed format for a standard table entry 
is simply (q, o, q’), where q is the exit (current) state, G is the 
transition, and q’ is the entrance (next) state. It can be noted that 
controlled-automata based techniques would normally output a 
control strategy in exactly this format. As briefly described 
below, Petri-net modeling techniques could as well output strate- 
gies in this format. 

In Petri-net theory, both the availability of a machine to 
perform a required operation and the availability of parts are 
considered for the allowance of transitions between states. How- 
ever, the responsibility for verifying the availability of parts can 
lie with the local controllers, freeing the supervisory controller 
to consider only the availability of machines. In other words, 
when the supervisor requests an operation to begin, it would be 
the local controller’s responsibility to ensure the availability of 
the required resource before the operation can actually begin. 
Hence, the states in the standard state-transition table would only 
consist of states that deal with machine availability, as is the case 
in controlled automata. 

The second step of the proposed approach is the input of the 
control strategy to a ladder-logic translator. The automatic trans- 
lator receives as input the standard state-transition table, and the 
list of the PLC’s input/output (UO) reference addresses for each 
event type. The output of the translator is a text file containing 
the PLC source code. 

The state-transition table input file contains the number of 
possible events for the control strategy at hand, as well as the 
possible events themselves (where each individual event that 
may occur in the workcell is labeled by a unique number). Our 
translator was designed such that only the VO reference address 
files for the events in the state-transition table at hand would need 
to be read during the translation. Each possible event has its own 
YO reference address file, with the event label incorporated into 
the file name (e.g., ref11 for an event labeled as 11). This renders 
the translator independent of specified workcell events and PLC 
wiring, since the information is not embedded into the hard-code 
part of the software. 

It should be noted that a translator would have to be hardware 
dependent, since currently each PLC manufacturer provides its 
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own PLC programming language. However, all PLC program- 
ming languages are based on basic ladder logic. Therefore, the 
translator described in this article can be adapted to other PLCs 
with minimal effort. (An example of the translation operation for 
a DES-strategy statement is given in the appendix.) 

In regard to PLC-to-PC communications, the primary con- 
cern is to monitor the data tables in the PLC processor and to be 
able to react to events as required. For example, if a machine 
failure sets a certain I/O bit in the PLC’s I/O data table, a 
monitoring program residing in the PC can read the value of this 
bit (1 or 0) and react to the fault by reporting the fault for the 
synthesis and translation of a new control strategy. 

WORKING machine-brokedown DOWN 

Fig. 6. The extended plant model [8]. 

Implementation Issues 

may generate alternate strategies that consider different sets of 

manner. These would be subsequently downloaded to a PLC in 
an on-line manner, based on events occurring in the workcell. An 

For systems consisting Of Only a few machines, One request will be required in the ladder-logic code. Since, at each 
state, there is 

possible controllable events. 

than one possible transitional event, this 
and to ladder-logic programs in an Off-line capability is in essence a mechanism for choosing one ofthe next 

- 
on-line capability of generating alternate strategies, on the other 
hand, requires the use of a real-time controller. The supervisory 
controller must have the capability of generating the control 
strategies as required, based on feedback information on the 
occurrence of events in the workcell. This information would 
then be written into a standard state-transition table and sent to 
the automatic translator, which would translate all the possible 
events into a ladder-logic code, thus closing the loop for the 
on-line operation of the controller. Although deadlock or con- 
flicts may arise while operating in this mode, the supervisory 
controller can successfully resolve such problems by the use of 
tools within DES theory (i.e., the application of the supcon 
operation), or by a heuristic means [13], as utilized by the 
controller in our laboratory. In the latter case, a heuristic algo- 
rithm is utilized, which detects potentially deadlocked parts and 
then re-routes the parts out of the deadlock. 

An important aspect that has to be addressed in the creation 
of the automatic ladder-logic translator is to ensure that the 
ladder-logic code written for each event type at each workcell 
state renders each event type uniquely distinguishable from an 
identical event type that may occur at another workcell state. (In 
other words, an a-type event that occurs when the workcell is in 
state X, and that triggers a certain output reaction in the PLC 
program, has to be distinct from the same a-type event that could 
occur within the workcell at State Y, and that would trigger a 
different output reaction.) To render each possible event unique, 
the workcell state has to be included as an input condition in the 
ladder-logic code, thus enabling the correct output. This implies 
that the PLC keeps track of the workcell states directly, and not 
of the machine states. 

In the implementation phase, one must also consider that 
controllable events do not occur spontaneously, as assumed 
previously in [1,6], but rather only as responses to requests sent 
by the supervisory controller. To accomplish this, the basic DES 
plant model must be modified such that controllable events are 
considered to comprise two distinct phases [SI: a request by the 
supervisor and the response from the plant, as shown in Fig. 6. 
The supervisor considers a change of state only when a response 
is received from the plant. Thus, when a translator is developed, 
another aspect addressed must be a capability to look ahead to 
the next state. This is in order to determine whether an event 

Experimental Results 
A DES-based supervisory controller for a robotic workcell 

was implemented in our laboratory. During the experimental 
run-time, different limited-size control strategies were with- 
drawn from a database, translated, and downloaded to the PLC 
in an on-line manner in response to a machine-failure simulation. 
The following is a description of the hardware and the software 
utilized, and the test results obtained. 

Experimental Set-Up 
The experimental hardware consisted of an 80486 host PC, 

an Allen-Bradley PLC-Yll Programmable Controller, two ma- 
chining devices, an industrial GMF s-100 robot, and a pallet 
conveyor, as shown in Fig. 7. One of the machining devices was 
an industrial CNC milling machine, while the second one was a 
simple switch-box designed and built to emulate the behavior of 
a machining device. The CNC milling machine and the robot 
were linked to the PLC via a dedicated 80486 PC that acted as 
their local controller. The physical communication links were 
achieved via Allen-Bradley’s Data Highway Plus (DH+) net- 
work, and a 1784-KT card that resided in each of the PCs. The 
conveyor and the other machining center were linked directly to 
the PLC processor. 

The software for PLC-to-PC communications utilized Allen- 
Bradley’s C-library function calls, linkable with commercial C 
compilers, from their Interchange software. The function calls 
allow the user to change processor modes, to download ladder- 
logic programs, and to read and write to the VO data tables in the 
processor’s memory. 

Experimental Procedure 
To demonstrate the feasibility of our proposed methodology, 

the experimental testbed was considered as a two-machine- 
workcell DES model. For simplicity purposes, the robot and the 
conveyor were considered as transport devices and they were not 
part of the DES model. The nominal state-transition diagram for 
a two-machine workcell (developed with the controlled-auto- 
mata tools from [l]) is as shown in Fig. 4. The a-type events 
represent the start of a job, the P-type events represent the 
completion of a job, the h-type events represent the breakdown 
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Fig. 7. Workcell setup. 

of a machine, and the p-type events represent the repair of a 
machine. 

According to the nominal strategy, a part first enters the 
workcell via a pallet conveyor. When a limit switch senses that 
a pallet has arrived at its expected destination, it notifies the PLC, 
which in turn enables the CNC milling machine, via a request 
signal, to start its operation. The robot controller intercepts this 
request and activates the robot to transfer the part from the 
conveyor to the CNC milling machine. Upon the completion of 
this operation, the robot’s controller notifies the PLC processor, 
which in turn allows the entry of another part into the workcell. 
In parallel, the CNC milling machine also notifies the PLC that 
it has started its operation. Subsequently, it is expected that the 
CNC milling machine will either complete its operation, and 
send the appropriate signal to the PLC, or break down, sending 
a different signal to the PLC. 

In the former case, the PLC enables the second (virtual) 
machining device to begin its operation. The robot’s controller 
once more intercepts this signal and transfers the part from the 
CNC milling machine to the second machining device. As the 
second machining device starts its operation, the nominal strat- 
egy allows the CNC milling machine to begin operating on anew 
part. Once the second machining device has completed its task, 
it is assumed that another transport device removes the part from 
the workcell. 

In the latter case, namely when the CNC milling machine 
fails, the workcell is stopped, and an alternate control strategy, 
shown in Fig. 8, is downloaded to the PLC from the host PC. The 
alternate strategy requires a part to go through two consecutive 
operations on the second machining device. The operation that 
replaces the operation on the CNC milling machine is denoted 
by the subscript “3”. Once the CNC milling machine is repaired, 
however, the nominal strategy is re-downloaded to the PLC’s 
processor. 

The failure of the second machining device, on the other hand, 
is considered “fatal” to the operation of the workcell, since it is 

P2 

Fig. 8. State-transition diagram of a control strategy for an alternate 
part route. 

assumed that the CNC milling machine is incapable of replacing 
it as an alternate device. In this case, the host PC instructs the 
PLC to await the repair of the CNC milling machine while 
maintaining the cell in a “frozen” status. 

The above supervisory-control strategies were vigorously 
tested. The experiments successfully verified the validity of our 
proposed methodology. 

Conclusion 
In this article, we have developed a generalized methodology 

for the implementation of a supervisory-control system that has 
the capability to generate control strategies in an on-line and 
automatic manner. The strategies are sub-sets of a comprehen- 
sive DES strategy and they are downloaded to the PLC according 
to events occurring in the workcell. The experimental results for 
a two-machine workcell has demonstrated that the proposed 
general methodology using PLC technology is a realistic and 
practical means for implementing DES supervisory-control 
strategies. 

For the on-line generation of control strategies in real-time, a 
hybrid controller such as the one presented in [13] should be 
considered. This specific controller has the capability to generate 
limited-size control strategies in a step-by-step manner in re- 
sponse to the occurrence of each event in the workcell. Operating 
in this mode, the possibility of deadlock arises, but the controller 
has the capability of dealing with direct deadlocks. 

Acknowledgments 
We gratefully acknowledge the support of the Natural Sci- 

ences and Engineering Research Council of Canada, the Allen- 
Bradley Canada Company, and the Rockwell International 
Canadian Trust. 

Appendix: Automatic Translator Example 
The automatic ladder-logic translator developed herein re- 

ceives a control-strategy statement in the form of a triplet (exit 
state, transition event, entrance state), and translates it to a 
ladder-logic source code. The inputs to the translator are (i) a file 
that contains the DES strategy triplets and (ii) a file which 
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contains a priori known UO reference addresses for each event. 
The output is the ladder-logic code for an Allen-Bradley PLC- 
5/11 Programmable Controller. 

As an example, the translation of the first two events in the 
state-transition table of the alternate control strategy, as shown 
in Fig. 8, is presented. 

Table 1 is the complete state-transition table for the alternate 
route. It has eight possible states as indicated by the first line in 
the table. The events are numbered 31,30,32,33,21,20,22,23 
and correspond to the events a3, p3, h3, p3, a2, p2, h2, and p2. As 
previously mentioned, the a and p events are controllable, while 
the events p and h are uncontrollable. 

second rung resets the event-request bit at (0:001/03) using the 
OTU (“unlatch output”) instruction, once a response has been 
received from the machine for the event-confirmation input bit 
(I:OOl/OO). The third rung sets the bit at (0:003/10) to register 
the occurrence of the event. The fourth rung sets the next work- 
cell state bit (0:002/01) “on,” and the fifth rung resets the current 
workcell state (0:002/00) “off.” The rungs dealing with p3 event 
are similar to those for the a3 event, except that no rung for an 
event-request is necessary since p3 is an uncontrollable event. 
The ladder-logic code for the other events are also similar to a 3  
and p3, depending whether they are controllable or uncon- 
trollable events. 

Table 1. State-Transition Table of the 
Alternate Control Strategy 

I 

Using Table 1 and the I/O reference-addresses files, the 
following translated ladder-logic code is obtained, via automatic 
translation, for the first two events a3 and p3: 

SOR XIC 0:002/00 XI0 0:002/06 OTL 0:001/03 EOR 
SOR XIC 0:002/00 XIC I:OO1/00 XI0 0:002/06 OTU 0:001/03 EOR 
SOR XIC 0:002/00 XIC I:OO1/00 X I 0  0:002/06 OTL 0:003/10 EOR 
SOR XIC 0:002/00 XIC I:OO1/OO XI0 0:002/06 OTL 0:002/01 EOR 
SOR XIC 0:002/00 XIC I:OO1/00 XI0  0:002/06 OTU 0:002/00 EOR 
SOR XIC 0:002/01 XIC I:001/01 XI0 0:002/06 OTL 0:003/11 EOR 
SOR XIC 0:002/01 XIC I:001/01 XI0  0:002/06 OTL 0:002/02 EOR 
SOR XIC 0:002/01 XIC 1:001/01 XI0  0:002/06 OTU 0:002/01 EOR 

In the first rung, SOR is the “start of rung” instruction, XIC 
is the “examine bit on” instruction, XI0  is the “examine bit off’ 
instruction, OTL is the “latch output,” and EOR is the “end of 
rung” of rung instruction. The I/O reference addresses are repre- 
sented by the alpha-numeric sequences beginning with “0 ’  for 
an output and “I” for an input. The first set of three digits before 
the slash indicate the data address at the word level, while the 
last two digits after the slash indicate the data address at the bit 
level. The first five rungs deal with the first possible event a3 (a 
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a 
Computer Users’ Ode to Dr. Seuss 

Here’s an easy game to play. 
Here’s an easy thing to say. 

If a packet hits a pocket on a socket on a port, 
And the bus is interrupted as a very last resort, 
And the address of the memory makes your floppy disk abort, 
Then the socket packet pocket has an error to report! 

If your cursor finds a menu item followed by a dash, 
And the double-clicking icon puts your window in the trash, 
And your data is corrupted cause the index doesn’t hash, 
Then your situation’s hopeless, and your system’s gonna crash. 

You can’t say this? What a shame, sir! 
We’ll find you another game, sir. 

If the label on the cable on the table at your house, 
Says the network is connected to the button on your mouse, 
But your packets want to tunnel on another protocol, 
That’s repeatedly rejected by the printer down the hall, 
And your screen is all distorted by the side effects of gauss, 
So you icons in the window are as wavy as a souse, 
Then you may as well reboot and go out with a bang, 
‘Cause as sure as I’m a poet, the sucker’s gonna hang! 

When the copy of your floppy’s getting sloppy on the disk, 
And the microcode instructions cause unnecessary risc, 
Then you have to flash your memory and you’ll want to RAM your ROM 
Quickly turn off your computer and be sure to tell your mom! 

-Anonymous, from the Editor S email 
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